Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(18-crown-6)potassium(I)]*µ*-chlorido-silver(I)-*µ*-chlorido]

Xing-Min Song,* Xian-Qiang Huang, Jian-Min Dou and **Da-Cheng Li**

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: msong@lcu.edu.cn

Received 29 June 2007; accepted 22 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.027; wR factor = 0.079; data-to-parameter ratio = 16.5.

The title complex, $[AgKCl_2(C_{12}H_{24}O_6)]_n$, has been synthesized by reaction of 18-crown-6 with KCl and AgNO₃. [K(18crown-6)]⁺ cations and [AgCl₂]⁻ anions form one-dimensional chains through $K \cdots Cl$ interactions of length 3.2568 (14) Å. Both the K⁺ and the Ag^I ions lie on centres of inversion.

Related literature

For other examples of structures incorporating [AgCl₂]⁻ anions, see: Exarchos et al. (1998); Gerisch et al. (1997). For polymeric structures incorporating crown ethers, see: Desai et al. (2001); Bastos et al. (2000).

Experimental

Crystal data

$\begin{bmatrix} AgKCl_2(C_{12}H_{24}O_6) \end{bmatrix} \\ M_r = 482.18 \\ Monoclinic, P2_1/n \\ a = 8.691 (4) Å \\ b = 8.244 (4) Å \\ c = 13.833 (6) Å \\ \beta = 102.764 (6)^{\circ} \\ \end{bmatrix}$	$V = 966.6 \text{ (8) } \text{\AA}^{3}$ Z = 2 Mo K\alpha radiation $\mu = 1.56 \text{ mm}^{-1}$ T = 298 (2) K $0.56 \times 0.34 \times 0.30 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.457, T_{max} = 0.627$	4877 measured reflections 1699 independent reflections 1308 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.079$ S = 1.03 1699 reflections	103 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (No. X051040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2208).

References

- Bastos, M. B. R., Moreira, J. C. & Farias, P. A. M. (2000). Anal. Chim. Acta, 408, 83-88
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 1, 83-90. Exarchos, G., Nyburg, S. C. & Robinson, S. D. (1998). Polyhedron, 17, 1257-1266
- Gerisch, M., Heinemann, F. W., Markgraf, U. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 1651-1656.

Sheldrick (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m2219 [doi:10.1107/S1600536807035726]

catena-Poly[[(18-crown-6)potassium(I)]-#-chlorido-silver(I)-#-chlorido]

X.-M. Song, X.-Q. Huang, J.-M. Dou and D.-C. Li

Comment

Much interest has been focused on crown ethers and their metal cations because they can act as modules to form novel polymeric structures (Desai *et al.*, 2001; Bastos *et al.*, 2000). The title complex consists of $[K(18-crown-6)]^+$ cations linked by $[AgCl_2]^-$ anions (Figure 1).

The Ag^I atom lies on a centre of inversion and is coordinated in a linear manner by by two Cl atoms with an Ag—Cl bond length of 2.3114 (10) Å. In the $[K(18\text{-crown-6})]^+$ cation, K^+ lies on a centre of inversion and is coordinated by six O atoms, with K^+ lying approximately in the plane of the crown ether. The K—O bond lengths vary from 2.783 (2) to 2.830 (2) Å. The cations and anions are linked *via* K—Cl interactions of length 3.2568 (14) Å, forming one-dimensional chains along the *b* axis (Figure 2).

Experimental

KCl (0.2238 g, 3.0 mmol) and AgNO₃ (0.2548 g, 1.5 mmol) in 15 ml e thanol were refluxed for 4 h, then 18-crown-6 (0.421 g, 1.5 mmol) was added slowly and the mixture was refluxed for a further 4 h. After cooling to room temperature, the mixture was filtered and the resulting solid was recrystallized from ether. Elemental analysis: calculated C 29.89, H 4.98%; found: C 30.02, H 4.99.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are omitted. Symmetry code (A): 1 - x, 1 - y, 1 - z.

 $\sqrt{1}$ Fig. 2. One-dimensional chain running along the *b*-axis.

catena-Poly[[(18-crown-6)potassium(I)]-µ-chlorido-silver(I)-µ-chlorido]

 $F_{000} = 488$

 $D_{\rm x} = 1.657 \ {\rm Mg \ m^{-3}}$ Mo Kα radiation

Cell parameters from 2464 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.9-26.1^{\circ}$

 $\mu = 1.56 \text{ mm}^{-1}$

T = 298 (2) K

Block, colourless $0.56 \times 0.34 \times 0.30 \text{ mm}$

Crystal data

[AgKCl₂(C₁₂H₂₄O₆)] $M_r = 482.18$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.691 (4) Åb = 8.244 (4) Å *c* = 13.833 (6) Å $\beta = 102.764 \ (6)^{\circ}$ $V = 966.6 (8) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD diffractometer	1699 independent reflections
Radiation source: fine-focus sealed tube	1308 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 10$
$T_{\min} = 0.457, \ T_{\max} = 0.627$	$k = -9 \rightarrow 9$
4877 measured reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 0.1659P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1699 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
103 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Atomic displacement parameters $(Å^2)$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.68538 (10)	0.17256 (10)	0.45904 (7)	0.0811 (3)
Ag1	0.5000	0.0000	0.5000	0.06429 (16)
K1	0.5000	0.5000	0.5000	0.0469 (2)
01	0.5045 (3)	0.5512 (2)	0.29837 (13)	0.0602 (5)
O2	0.7752 (2)	0.6133 (2)	0.45167 (15)	0.0629 (5)
O3	0.7445 (2)	0.6290 (2)	0.64818 (13)	0.0624 (5)
C1	0.4100 (4)	0.4327 (4)	0.2368 (2)	0.0764 (10)
H1A	0.4570	0.3261	0.2510	0.092*
H1B	0.4053	0.4573	0.1677	0.092*
C2	0.6609 (4)	0.5529 (4)	0.2855 (2)	0.0704 (9)
H2A	0.6617	0.5810	0.2176	0.084*
H2B	0.7074	0.4461	0.2992	0.084*
C3	0.7541 (4)	0.6736 (4)	0.3540 (2)	0.0722 (9)
H3A	0.8557	0.6905	0.3375	0.087*
H3B	0.6988	0.7765	0.3483	0.087*
C4	0.8766 (4)	0.7074 (4)	0.5233 (3)	0.0775 (10)
H4A	0.8337	0.8158	0.5251	0.093*
H4B	0.9792	0.7162	0.5070	0.093*
C5	0.8922 (3)	0.6288 (4)	0.6205 (3)	0.0782 (10)
H5A	0.9286	0.5181	0.6172	0.094*
H5B	0.9695	0.6865	0.6698	0.094*
C6	0.7508 (4)	0.5672 (5)	0.7444 (2)	0.0775 (10)
H6A	0.8198	0.6339	0.7932	0.093*
H6B	0.7925	0.4576	0.7495	0.093*

-	-					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0670 (5)	0.0692 (5)	0.1129 (7)	0.0011 (4)	0.0325 (5)	0.0147 (4)
Ag1	0.0596 (2)	0.0636 (2)	0.0702 (2)	-0.00286 (15)	0.01553 (17)	0.00199 (15)
K1	0.0389 (4)	0.0580 (5)	0.0438 (4)	-0.0085 (3)	0.0093 (3)	-0.0009 (3)
01	0.0699 (13)	0.0619 (11)	0.0505 (11)	0.0093 (10)	0.0171 (10)	0.0017 (9)

supplementary materials

02 03 C1 C2 C3 C4 C5 C6	0.0523 (11) 0.0484 (11) 0.110 (3) 0.089 (2) 0.0593 (18) 0.0480 (17) 0.0355 (15) 0.083 (3)	0.0603 (12) 0.0703 (12) 0.0723 (19) 0.0700 (18) 0.0677 (19) 0.068 (2) 0.086 (2) 0.073 (2)	0.0785 (13 0.0614 (12 0.0434 (16 0.0629 (19 0.102 (3) 0.121 (3) 0.104 (3) 0.063 (2))) () ()	-0.0153 (10) 0.0053 (9) 0.006 (2) 0.0200 (19) 0.0081 (16) -0.0186 (16) -0.0010 (15) 0.0062 (18)	0.0193 (10) -0.0029 (9) 0.0098 (18) 0.0393 (18) 0.0450 (19) 0.0290 (19) -0.0050 (16) -0.0147 (18)	0.0032 (10) -0.0083 (9) -0.0033 (15) 0.0167 (16) 0.0265 (18) -0.019 (2)) -0.032 (2)) -0.0048 (15)
Geometric paran	neters (Å, °)						
Cl1—Ag1		2.3117 (11)	C	$1 - C6^{ii}$	i	1	.477 (4)
Cl1—K1		3.2568 (14)	(C1—H1A	4	().970
$Ag1-C11^{i}$		2.3117 (11)	(C1—H1H	3	().970
K1—O2		2.783 (2)	(C2—C3		1	.484 (4)
K1—O2 ⁱⁱ		2.783 (2)	(С2—Н2А	A	().970
K1-03 ⁱⁱ		2.8145 (19)	(С2—Н2Н	3	(0.970
K1—O3		2.8145 (19)	(С3—НЗА	A	().970
K1—O1 ⁱⁱ		2.830 (2)	(С3—НЗІ	3	().970
K1—01		2.830 (2)	(C4—C5		1.471 (5)	
K1—Cl1 ⁱⁱ		3.2568 (14)	(C4—H4A	4	().970
O1—C2		1.409 (4)	(C4—H4H	3	().970
O1—C1		1.430 (4)	(С5—Н5А	4	().970
O2—C4		1.405 (4)	(C5—H5H	3	(0.970
O2—C3		1.413 (3)	(C6—C1 ⁱⁱ	i	1	.477 (4)
O3—C6		1.415 (3)	(C6—H6A	4	(0.970
O3—C5		1.419 (3)	(C6—H6I	3	().970
Ag1—Cl1—K1		93.96 (4)	(03-03-	—K1	1	12.68 (16)
Cl1 ⁱ —Ag1—Cl1		180.0	(D1—C1-	–C6 ⁱⁱ	1	09.6 (3)
O2—K1—O2 ⁱⁱ		180.0	(D1—C1-	—H1A	1	109.7
O2—K1—O3 ⁱⁱ		120.16 (6)	(C6 ⁱⁱ —C1	—H1A	1	109.7
O2 ⁱⁱ —K1—O3 ⁱⁱ		59.84 (6)	(D1—C1-	—H1B	1	109.7
O2—K1—O3		59.84 (6)	(C6 ⁱⁱ —C1	—H1B	1	09.7
O2 ⁱⁱ —K1—O3		120.16 (6)	H	HIA—C	1—H1B	1	108.2
O3 ⁱⁱ —K1—O3		180.0	(D1—C2-	—С3	1	109.4 (2)
O2—K1—O1 ⁱⁱ		119.12 (6)	(D1—C2-	—H2A	1	09.8
O2 ⁱⁱ —K1—O1 ⁱⁱ		60.88 (6)	(C3—C2-	—H2A	1	109.8
O3 ⁱⁱ —K1—O1 ⁱⁱ		119.26 (6)	(D1—C2-	—H2B	1	09.8
O3—K1—O1 ⁱⁱ		60.74 (6)	(C3—C2-	—H2B	1	09.8
O2—K1—O1		60.88 (6)	H	H2A—C	2—Н2В	1	108.2
O2 ⁱⁱ —K1—O1		119.12 (6)	(D2—C3-	C2	1	108.2 (2)
O3 ⁱⁱ —K1—O1		60.74 (6)	(D2—C3-	—H3A	1	10.1
O3—K1—O1		119.26 (6)	(С2—С3-	—H3A	1	10.1
O1 ⁱⁱ —K1—O1		180.0	(D2—C3-	—H3B	1	10.1

O2—K1—Cl1 ⁱⁱ	104.35 (5)	С2—С3—Н3В	110.1
O2 ⁱⁱ —K1—Cl1 ⁱⁱ	75.65 (5)	НЗА—СЗ—НЗВ	108.4
O3 ⁱⁱ —K1—Cl1 ⁱⁱ	96.71 (5)	O2—C4—C5	108.6 (3)
O3—K1—Cl1 ⁱⁱ	83.29 (5)	O2—C4—H4A	110.0
O1 ⁱⁱ —K1—Cl1 ⁱⁱ	80.62 (4)	C5—C4—H4A	110.0
O1—K1—Cl1 ⁱⁱ	99.38 (4)	O2—C4—H4B	110.0
O2—K1—Cl1	75.65 (5)	C5—C4—H4B	110.0
O2 ⁱⁱ —K1—Cl1	104.35 (5)	H4A—C4—H4B	108.4
O3 ⁱⁱ —K1—Cl1	83.29 (5)	O3—C5—C4	109.9 (3)
O3—K1—Cl1	96.71 (5)	O3—C5—H5A	109.7
O1 ⁱⁱ —K1—Cl1	99.38 (4)	C4—C5—H5A	109.7
O1—K1—Cl1	80.62 (4)	O3—C5—H5B	109.7
Cl1 ⁱⁱ —K1—Cl1	180.0	С4—С5—Н5В	109.7
C2—O1—C1	112.0 (2)	H5A—C5—H5B	108.2
C2—O1—K1	110.46 (17)	O3—C6—C1 ⁱⁱ	108.9 (3)
C1—O1—K1	110.70 (17)	O3—C6—H6A	109.9
C4—O2—C3	114.2 (2)	C1 ⁱⁱ —C6—H6A	109.9
C4—O2—K1	116.99 (17)	O3—C6—H6B	109.9
C3—O2—K1	114.25 (16)	C1 ⁱⁱ —C6—H6B	109.9
C6—O3—C5	113.9 (3)	H6A—C6—H6B	108.3
C6—O3—K1	114.53 (18)		
Ag1—Cl1—K1—O2	176.84 (5)	Cl1 ⁱⁱ —K1—O2—C3	-77.49 (18)
Ag1—Cl1—K1—O2 ⁱⁱ	-3.16 (5)	Cl1—K1—O2—C3	102.51 (18)
Ag1—Cl1—K1—O3 ⁱⁱ	-59.64 (5)	O2—K1—O3—C6	-152.6 (2)
Ag1—Cl1—K1—O3	120.36 (5)	O2 ⁱⁱ —K1—O3—C6	27.4 (2)
Ag1—Cl1—K1—O1 ⁱⁱ	59.01 (5)	O1 ⁱⁱ —K1—O3—C6	13.5 (2)
Ag1—Cl1—K1—O1	-120.99 (5)	O1—K1—O3—C6	-166.5 (2)
O2—K1—O1—C2	20.34 (18)	Cl1 ⁱⁱ —K1—O3—C6	96.4 (2)
O2 ⁱⁱ —K1—O1—C2	-159.66 (18)	Cl1—K1—O3—C6	-83.6 (2)
O3 ⁱⁱ —K1—O1—C2	-145.9 (2)	O2—K1—O3—C5	-20.37 (19)
O3—K1—O1—C2	34.1 (2)	O2 ⁱⁱ —K1—O3—C5	159.63 (19)
Cl1 ⁱⁱ —K1—O1—C2	121.62 (18)	O1 ⁱⁱ —K1—O3—C5	145.7 (2)
Cl1—K1—O1—C2	-58.38 (18)	O1—K1—O3—C5	-34.3 (2)
O2—K1—O1—C1	145.0 (2)	Cl1 ⁱⁱ —K1—O3—C5	-131.3 (2)
O2 ⁱⁱ —K1—O1—C1	-35.0 (2)	Cl1—K1—O3—C5	48.7 (2)
O3 ⁱⁱ —K1—O1—C1	-21.23 (18)	C2—O1—C1—C6 ⁱⁱ	178.3 (3)
O3—K1—O1—C1	158.77 (18)	K1—O1—C1—C6 ⁱⁱ	54.5 (3)
Cl1 ⁱⁱ —K1—O1—C1	-113.71 (19)	C1—O1—C2—C3	-177.8 (2)
Cl1—K1—O1—C1	66.29 (19)	K1—O1—C2—C3	-53.9 (3)
O3 ⁱⁱ —K1—O2—C4	166.4 (2)	C4—O2—C3—C2	173.3 (2)
O3—K1—O2—C4	-13.6 (2)	K1—O2—C3—C2	-48.3 (3)
O1 ⁱⁱ —K1—O2—C4	-27.5 (2)	01—C2—C3—O2	70.3 (3)
O1—K1—O2—C4	152.5 (2)	C3—O2—C4—C5	-178.1 (2)

supplementary materials

Cl1 ⁱⁱ —K1—O2—C4	59.7 (2)	K1—02—C4—C5	44.7 (3)
Cl1—K1—O2—C4	-120.3 (2)	C6—O3—C5—C4	-175.2 (3)
O3 ⁱⁱ —K1—O2—C3	29.3 (2)	K1—O3—C5—C4	52.2 (3)
O3—K1—O2—C3	-150.7 (2)	O2—C4—C5—O3	-64.7 (3)
O1 ⁱⁱ —K1—O2—C3	-164.62 (17)	C5—O3—C6—C1 ⁱⁱ	-177.8 (3)
O1—K1—O2—C3	15.38 (17)	K1—O3—C6—C1 ⁱⁱ	-46.1 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

Fig. 1

Fig. 2

V MANK M e la °∕